Underlying slip/twinning activities of Mg-xGd alloys investigated by modified lattice rotation analysis
نویسندگان
چکیده
The inconsistencies regarding the fundamental correlation between Gd content and slip (twinning) activities of Mg alloys appeal further investigations. However, traditional dislocations analysis by TEM is time-consuming, that SEM/EBSD cannot recognize partial modes. These urge a more efficient comprehensive approach to easily distinguish all potential modes occurred concurrently in alloy matrix. Here we report modified lattice rotation can systems provide statistical results for Using this method, high ductility Mg-Gd ascribed enhanced non-basal slips, cross-slip, postponed twinning addition quantitatively clarified.
منابع مشابه
EXPERIMENTALl ANALYSIS OF PARTITION COEFFICIENT IN Al-Mg ALLOYS
Because the partition coefficient is one of the most important parameters affecting microsegregation, the aim of this research is to experimentally analyse the partition coefficient in Al-Mg alloys. In order to experimentally measure the partition coefficient, a series of quenching experiments during solidification were carried out. For this purpose binary Al-Mg alloys containing 6.7 and 10.2 w...
متن کاملA Review on the Semiconducting Behavior of Passive Films Formed on Mg Alloys by Mott–Schottky Analysis
Mg alloys have a vast usage where weight reduction is really significant since they do the features really well for materials of ultra-light weight. However, Mg is inherently a reactive metal and its alloys generally possess quite weak corrosion resistance that widely restricts their technological usages, especially in some rough service conditions. Despite, many investigations on the passive a...
متن کاملQuasicrystal-reinforced Mg alloys
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/m...
متن کاملQuasicrystal-reinforced Mg alloys
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/m...
متن کاملAntibacterial biodegradable Mg-Ag alloys.
The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnesium and Alloys
سال: 2023
ISSN: ['2213-9567']
DOI: https://doi.org/10.1016/j.jma.2021.06.008